9 research outputs found

    Upravljanje otporno na kvarove modularnim prekidačko-reluktantnim strojem nadahnuto prirodom

    Get PDF
    Fault tolerance is an obligatory feature in safety critical applications (aeronautical, aerospace, medical and military applications, power plants, etc.), where loss of life, environmental disasters, equipment destructions or unplanned downtimes must be avoided. For such applications, a novel bio-inspired motion control system is proposed. All its three components (the switched reluctance machine, the power converter and the control system) are designed to be as fault tolerant as possible. This paper describes all these three fault tolerant components: the bio-inspired control system having self-healing capabilities, the power converter with an extra leg and the fault tolerant modular machine. The theoretical expectations and simulation results are validated by means of laboratory experiments.Otpornost na kvarove je nužnost u sigurnosno kritičnim aplikacijama (aeronautičke, zrakoplovne, medicinske i vojne aplikacije, elektrane itd.), gdje je potrebno izbjeći smrtne slučajeve, prirodne nepogode, uništenje opreme ili neplanirane prekide u radu. Za takve aplikacije, predložen je novi slijedni sustav nadahnut prirodom. Sve tri komponente (prekidačko-reluktantni stroj, pretvarač i sustav upravljanja) su projektirani da budu što je više moguće otporni na kvarove. Ovaj rad opisuje sve tri komponente: sustav upravljanja nadahnut prirodom sa samoliječećim svojstvima, pretvarač s dodatnom granom i modularni stroj otporan na kvarove. Teoretska očekivanja i simulacijski rezultati su provjereni laboratorijskim eksperimentima

    Automated interpretation of complex line figures

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN041396 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    A Hardware Artificial Immune System and Embryonic Array for Fault Tolerant Systems

    No full text
    Nature demonstrates amazing levels of fault tolerance; animals can survive injury, damage, wear and tear, and are under continual attack from infectious pathogens. This paper details inspiration from biology to provide fault tolerant electronic circuits. An artificial immune system (AIS) is used to detect faults and an embryonic array to quickly reconfigure around them. The AIS makes use of a negative selection algorithm to detect abnormal behaviour. The embryonic array takes its inspiration from the development of multi-cellular organisms; each cell contains all the information necessary to describe the complete individual. Should an electronic cell fail, its neighbours have the configuration data to take over the failed cell's functionality. Two demonstration robot control systems have been implemented to provide a Khepera robot with fault tolerance. The first is very simple and is implemented on an embryonic array within a Virtex FPGA. An AIS is also implemented within the array which learns normal behaviour. Injected stuck-at faults were detected and accommodated. The second system uses fuzzy rules (implemented in software) to provide a more graceful functionality. A small AIS has been implemented to provide fault detection; it detected all faults that produced an error greater than 15% (or 23% off straight)
    corecore